Flux Synthesis of $K_2Cu_2P_4Se_{10}$: A Layered Selenophosphate with a New Cyclohexane-like $[P_4Se_{10}]^{4-}$ Group

Konstantinos Chondroudis and Mercouri G. Kanatzidis*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

Received December 9, 1997

The A/P/Q (A = alkali metal; Q = S, Se) flux provides essentially a solution medium where $[P_vQ_z]^{n-}$ anions can exist in high concentrations, their identity and character depending on the alkali polychalcophosphate basicity and composition. Each $[P_vQ_z]^{n-}$ anion can form, grow, and disappear, or convert inside the flux, and therefore it presents itself as a classical coordination ligand for metal ions.^{1–6} The polychalcophosphate flux method has afforded several new $[P_yQ_z]^{n-}$ anions which serve as building blocks in novel compounds such as $A_5Sn(PSe_5)_3$ (A = K, Rb),^{2d} $Rb_4Ti_2(P_2Se_9)_2(P_2Se_7)$,^{3b} K₃RuP₅Se₁₀,^{3e} and A₃AuP₂Se₈ (A = K, Rb, Cs).3f

The dissolution of Cu in A/P/Se fluxes has given two phases: one with Cs and one with K. Both phases have the same empirical formula, but a strong counterion effect enforces two different structures on them. The one-dimensional Cs₂Cu₂P₂Se₆^{3a} features trigonal planar copper atoms, with Cu⁺···Cu⁺ interactions bridged by the ethane-like [P₂Se₆]⁴⁻ group, whereas K₃Cu₃P₃-Se₉⁵ has a three-dimensional network with tunnels running along the *a* and *b* directions. Its framework is also built with $[P_2Se_6]^{4-1}$ anions. The only other related phases are Cu₃PSe₄^{7a} and

- (2) (a) McCarthy, T. J.; Kanatzidis, M. G. Chem. Mater. 1993, 5, 1061. (b) McCarthy, T. J.; Kanatzidis, M. G. J. Alloys Compd. 1996, 236, 70. (c) Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. Inorg. Chem. 1996, 35, 840. (d) Chondroudis, K.; Kanatzidis, M. G. J. Chem. Soc., Chem. Commun. 1996, 1371.
- (3) (a) McCarthy, T. J.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 1257. (b) Chondroudis, K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 5401. (c) Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. Inorg. Chem. 1996, 35, 3451. (d) Chondroudis, K.; Kanatzidis, M. G. J. Chem. Soc., Chem. Commun. 1997, 401. (e) Chondroudis, K.; Kanatzidis, M. G. Angew. Chem., Int. Ed. Engl. 1997, 36, 1324. (f) Chondroudis, K.; Hanko, J. A.; Kanatzidis, M. G. Inorg. Chem. 1997, 36, 2623. (g) Chondroudis, K.; Kanatzidis, M. G. C. R. Acad. Sci. Paris, Ser. B, 1996, 322, 887. (h) Chondroudis, K.; Kanatzidis, M. G. J. Am. Chem. Soc. 1997, 119, 2574.
- (4) (a) Chen, J. H.; Dorhout, P. K. *Inorg. Chem.* 1995, *34*, 5705. (b) Chen, J. H.; Dorhout, P. K.; Ostenson, J. E. *Inorg. Chem.* 1996, *35*, 5627.
 (5) Dorhout, P. K.; Malo, T. M. Z. *Anorg. Allg. Chem.* 1996, *622*, 385.
- (6) (a) Do, J.; Yun, H. Inorg. Chem. 1996, 35, 3729. (b) Do, J.; Lee, K.;
- Yun, H. J. Solid State Chem. 1996, 3125, 30. (a) Garin, J.; Parthe, E. Acta Crystallogr. 1972, B28, 3672. (b) Pfeiff,
- R.; Kniep, R. J. Alloys Compd. 1992, 186, 111-133. (8) (a) $K_2Cu_2P_4Se_{10}$ was synthesized from a mixture of Cu (0.30 mmol), P
- (0.90 mmol), K₂Se (0.30 mmol), and Se (2.40 mmol) which was sealed under vacuum in a Pyrex tube and heated to 570 °C for 2 d, followed by cooling to 50 °C at 21 °C h⁻¹. The excess K_xP_ySe_z flux was removed with degassed DMF. Further washing with anhydrous ether revealed red, irregularly shaped crystals of K2Cu2P4Se10 (~88% yield based on Cu). The crystals are air- and water-stable. Semiquantitative microprobe analysis on single crystals gave K_{1.9}Cu₂P_{4.2}Se_{10.7} (average of four data acquisitions). (b) A Rigaku AFC6S diffractometer equipped with a graphite crystal monochromator and Mo K α ($\lambda = 0.71069$ Å) radiation was used to collect data from a crystal of dimensions $0.22 \times 0.11 \times$ 0.08 mm in the $\omega - 2\theta$ scan mode. The structure was solved with SHELXS-869a and refined by full-matrix least-squares techniques of the TEXSAN^{9b} software package. Crystal data at 23 °C: a = 10.627(2) Å, b = 7.767(1) Å, c = 11.966(1) Å, $\beta = 109.125(8)^{\circ}$, V = 933.2(2) Å³, Z = 2, $D_c = 3.981$ g cm⁻³, space group $P2_1/n$ (No. 14), μ (Mo K α) = 225.52 cm⁻¹, $2\theta_{max} = 50.0^{\circ}$, octants collected 0 < h < 13, 0 < k < 9, -14 < l < 14; number of total data collected 1888; number of unique data 1787 ($R_{int} = 0.024$); number of data with $F_0^2 > 3\sigma(F_0^2)$ 1145; number of variables 82. An empirical absorption correction based on ψ scans was applied to the data; absorbance ratio (min/max) 0.7831. All atoms were refined anisotropically. Final $R/R_{\rm w} = 0.028/0.027$.

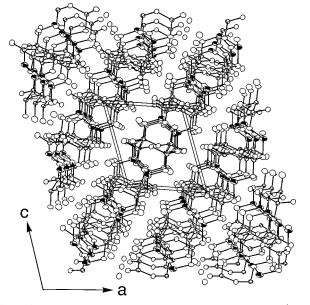
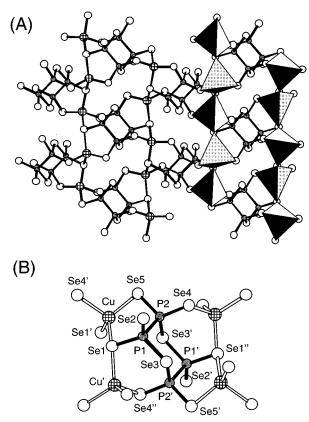


Figure 1. Structure of $K_2Cu_2P_4Se_{10}$ viewed down the *b* axis. K⁺ ions are light gray ellipsoids, selenium atoms are open ellipsoids, and phosphorus atoms are small black ellipsoids.


quaternary CuMP₂Se₆ (M = Cr, In),^{7b} which have been prepared by direct combination reactions. Further investigations into the Cu chemistry in the aforementioned fluxes led to K₂Cu₂P₄Se₁₀, a new phase with an unprecedented cyclohexane-like [P₄Se₁₀]⁴⁻ group.

 $K_2Cu_2P_4Se_{10}^8$ is a compound with a new, two-dimensional structure type. It contains [Cu₂P₄Se₁₀]_n²ⁿ⁻ layers which are separated by eight-coordinate K⁺ cations [range of K-Se distances 3.396(3)-3.780(3) Å; average 3.528 Å], as shown in Figure 1. The layers consist of infinite chains of corner-sharing $CuSe_4$ tetrahedra that propagate along the *b* axis; see Figure 2A. These chains are then interstitched in two dimensions by cyclic $[P_4Se_{10}]^{4-}$ groups. The latter are observed for the first time and feature P-P bonds with tetravalent P atoms. The only other $[P_yQ_z]^{n-}$ group with P–P bonds and P^{4+} is the ethane-like $[P_2Se_6]^{4-}.$ The $[P_4Se_{10}]^{4-}$ group forms a cyclohexane-like ring with the chair conformation, which consists of four phosphorus and two selenium atoms; see Figure 2B. It can be viewed as the result of a fusion between two [P2Se6]4- groups which share two common selenium atoms [Se(3), Se(3')]. As a ligand, it possesses eight terminal Se atoms available for coordination. In the present case, the unit utilizes six terminal Se atoms to engage four Cu atoms to build the entire $[Cu_2P_4Se_{10}]_n^{2n-}$ layer; see Figure 2B.

The Cu atoms have tetrahedral coordination with Cu-Se distances averaging 2.46(5) Å, similar to those found in Cs₂Cu₂P₂-

⁽¹⁾ Kanatzidis, M. G. Curr. Opin. Solid State Mater. Sci. 1997, 2, 139.

^{(9) (}a) Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M., Kruger, C., Doddard, R., Eds.; Oxford University Press: Oxford, England, 1985; pp 175-189. (b) TEXSAN: Single-Crystal Structure Analysis Software, Version 5.0; Molecular Structure Corp.; The Woodlands, TX 77381, 1981.

Figure 2. (A) A single $[Cu_2P_4Se_{10}]_n^{2n-}$ layer viewed in the $[\bar{1}01]$ direction. Some corner-sharing CuSe₄ tetrahedra are shown in polyhedral representation. (B) A fragment of the same layer with labeling. Selected distances (Å): Cu-Se(1) 2.488(2), Cu-Se(1') 2.524(2), Cu-Se(4) 2.450(2), Cu-Se(5) 2.394(2), P(1)-Se(1) 2.186(3), P(1)-Se(2) 2.138-(3), P(1)-Se(3) 2.277(3), P(2)-Se(3') 2.281(3), P(2)-Se(4) 2.151(3), P(2)-Se(5) 2.161(3), P(1)-P(2) 2.246(4). Selected angles (deg): Se(1)-Cu-Se(1') 109.88(5), Se(1)-Cu-Se(4) 112.32(7), Se(1)-Cu-Se(5) 110.39(6), Se(1)-P(1)-P(2) 109.2(1), similar angles around P(2), P(1)-Se(3)-P(2') 109.9(1), P(1)-Se(1)-Cu 96.36(8), P(2)-Se(5)-Cu 94.72-(8), Cu-Se(1)-Cu' 143.33(6), P(2')-Se(4'')-Cu' 102.61(9).

 Se_6^{3a} and $K_3Cu_3P_3Se_9^5$. Selected distances and angles are given in the caption of Figure 2. The P–Se distances range from 2.138(3) to 2.281(3) Å, with the noncoordinated selenium atoms [Se(2)] displaying the shorter ones.

The stabilization of the new $[P_4Se_{10}]^{4-}$ anion, instead of the very common $[P_2Se_6]^{4-}$, perhaps can be rationalized in terms of flux Lewis basicity. The composition of the flux (Cu:P:K₂Se:Se = 1:2:1.5:4.5),¹⁰ used to obtain K₃Cu₃P₃Se₉,⁵ has a Lewis bacisity which typically favors the formation of the $[P_2Se_6]^{4-}$ anion (P^{4+}) .³⁷

(10) The actual flux composition 5 was 1.5:0 of $K_2Se_4{:}Se$, which is equivalent to 1.5:4.5 of $K_2Se{:}Se$.

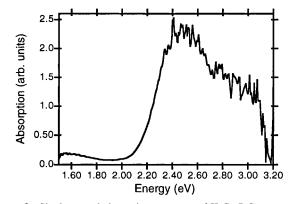


Figure 3. Single-crystal absorption spectrum of K₂Cu₂P₄Se₁₀.

In the case of $K_2Cu_2P_4Se_{10}$, the composition (Cu:P:K₂Se:Se = 1:3:1:8) contains less K_2Se and more Se, thus rendering the flux even less basic and this presumably forces the $[P_2Se_6]^{4-}$ anion to convert to the $[P_4Se_{10}]^{4-}$ anion according to the equilibrium shown in eq 1.

$$2[P_2Se_6]^{4-} \rightleftharpoons [P_4Se_{10}]^{4-} + 2Se^{2-}$$
(1)

Single-crystal optical transmission measurements on transparent, well-formed crystals give the spectrum of Figure 3, which shows a sharp gap, E_g , of 2.07 eV. Therefore, the compound is a semiconductor. The infrared spectrum displays absorptions at ca. 499 (vs), 488 (vs), 479 (vs), 435 (s), 387 (vs), 302 (vs), 194 (m), and 159 (m) cm⁻¹. These vibrations are very similar to the ones observed for the [P₂Se₆]^{4–} group.^{3a,c} The absorptions below 200 cm⁻¹ are most probably due to Cu–Se vibrations.³ Differential thermal analysis (DTA) suggests that K₂Cu₂P₄Se₁₀ melts congruently at ca. 470 °C.

The synthesis of $K_2Cu_2P_4Se_{10}$ was accomplished through the chalcophosphate flux method. With this compound, the repertoire of chalcophosphate ligands is expanded to include the new cyclohexane-like $[P_4Se_{10}]^{4-}$ unit. The latter is the only other anion, except $[P_2Se_6]^{4-}$, which contains P–P bonds and P⁴⁺. It would be interesting to see if the $[P_4Se_{10}]^{4-}$ unit can be isolated as a molecular species, using charge-balancing alkali metal cations [e.g., $A_4P_4Se_{10}$ (A = K, Rb, Cs)].¹¹

Acknowledgment. Financial support from National Science Foundation DMR-9527347 is gratefully acknowledged.

Supporting Information Available: Tables of crystal data and X-ray experimental details, fractional atomic coordinates of all atoms, anisotropic and isotropic thermal parameters of all atoms, interatomic distances and angles, and calculated and observed X-ray powder patterns (16 pages). Ordering information is given in any current masthead page.

IC971539+

⁽¹¹⁾ Kanatzidis, M. G.; Aitken, J. Work in progress.