Flux Synthesis of $K_2Cu_2P_4Se_{10}$ **:** A Layered Selenophosphate with a New Cyclohexane-like $[P_4Se_{10}]^{4-}$ Group

Konstantinos Chondroudis and Mercouri G. Kanatzidis*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

*Recei*V*ed December 9, 1997*

The A/P/Q ($A =$ alkali metal; $Q = S$, Se) flux provides essentially a solution medium where $[P_vQ_z]^{n-}$ anions can exist in high concentrations, their identity and character depending on the alkali polychalcophosphate basicity and composition. Each $[P_vQ_z]^{n}$ anion can form, grow, and disappear, or convert inside the flux, and therefore it presents itself as a classical coordination ligand for metal ions.¹⁻⁶ The polychalcophosphate flux method has afforded several new $[P_y Q_z]^{n-}$ anions which serve as building blocks in novel compounds such as $A_5Sn(PSe_5)$ ₃ (A = K, Rb),^{2d} $Rb_4Ti_2(P_2Se_9)_2(P_2Se_7)$,^{3b} $K_3RuP_5Se_{10}$,^{3e} and $A_3AuP_2Se_8$ (A = K, Rb Cs)^{3f} Rb, Cs).^{3f}

The dissolution of Cu in A/P/Se fluxes has given two phases: one with Cs and one with K. Both phases have the same empirical formula, but a strong counterion effect enforces two different structures on them. The one-dimensional $Cs_2Cu_2P_2Se_6^{3a}$ features trigonal planar copper atoms, with $Cu^+\cdots Cu^+$ interactions bridged by the ethane-like $[P_2Se_6]^{4-}$ group, whereas $K_3Cu_3P_3-$ Se₉⁵ has a three-dimensional network with tunnels running along the *a* and *b* directions. Its framework is also built with $[P_2Se_6]^{4-}$ anions. The only other related phases are $Cu₃PSe₄^{7a}$ and

- (2) (a) McCarthy, T. J.; Kanatzidis, M. G. *Chem. Mater*. **1993**, *5*, 1061. (b) McCarthy, T. J.; Kanatzidis, M. G. *J. Alloys Comp*d. **1996**, *236*, 70. (c) Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. *Inorg. Chem.* **1996**, *35*, 840. (d) Chondroudis, K.; Kanatzidis, M. G. *J. Chem. Soc., Chem. Commun*. **1996**, 1371.
- (3) (a) McCarthy, T. J.; Kanatzidis, M. G. *Inorg. Chem.* **1995**, *34*, 1257. (b) Chondroudis, K.; Kanatzidis, M. G. *Inorg. Chem.* **1995**, *34*, 5401. (c) Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. *Inorg. Chem.* **1996**, *35*, 3451. (d) Chondroudis, K.; Kanatzidis, M. G. *J. Chem. Soc., Chem. Commun*. **1997**, 401. (e) Chondroudis, K.; Kanatzidis, M. G. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1324. (f) Chondroudis, K.; Hanko, J. A.; Kanatzidis, M. G. *Inorg. Chem*. **1997**, *36*, 2623. (g) Chondroudis, K.; Kanatzidis, M. G. *C. R. Acad. Sci. Paris, Ser. B*, **1996**, *322*, 887. (h) Chondroudis, K.; Kanatzidis, M. G. *J. Am. Chem. Soc.* **1997**, *119*, 2574.
- (4) (a) Chen, J. H.; Dorhout, P. K. *Inorg. Chem.* **1995**, *34*, 5705. (b) Chen, J. H.; Dorhout, P. K.; Ostenson, J. E. *Inorg. Chem.* **1996**, *35*, 5627.
- (5) Dorhout, P. K.; Malo, T. M. *Z. Anorg. Allg. Chem*. **1996**, *622*, 385.
- (6) (a) Do, J.; Yun, H. *Inorg. Chem.* **1996**, *35*, 3729. (b) Do, J.; Lee, K.; Yun, H. *J. Solid State Chem*. **1996**, *3125*, 30.
- (7) (a) Garin, J.; Parthe, E. *Acta Crystallogr.* **1972**, *B28*, 3672. (b) Pfeiff, R.; Kniep, R. *J. Alloys Compd.* **¹⁹⁹²**, *¹⁸⁶*, 111-133.
- (8) (a) $K_2Cu_2P_4Se_{10}$ was synthesized from a mixture of Cu (0.30 mmol), P (0.90 mmol) , K_2 Se (0.30 mmol) , and Se (2.40 mmol) which was sealed under vacuum in a Pyrex tube and heated to 570 °C for 2 d, followed by cooling to 50 °C at 21 °C h⁻¹. The excess $K_xP_ySe_z$ flux was removed with degassed DMF. Further washing with anhydrous ether revealed red, irregularly shaped crystals of K₂Cu₂P₄Se₁₀ (~88% yield based on Cu). The crystals are air- and water-stable. Semiquantitative microprobe analysis on single crystals gave $K_{1.9}Cu_2P_{4.2}Se_{10.7}$ (average of four data acquisitions). (b) A Rigaku AFC6S diffractometer equipped with a graphite crystal monochromator and Mo K α (λ = 0.710 69 Å) radiation graphite crystal monochromator and Mo K α ($\lambda = 0.710$ 69 Å) radiation was used to collect data from a crystal of dimensions 0.22 × 0.11 × 0.08 mm in the *^ω*-2*^θ* scan mode. The structure was solved with SHELXS-86^{9a} and refined by full-matrix least-squares techniques of the TEXSAN^{9b} software package. Crystal data at 23° C: $a = 10.627(2)$ Å, *b* = 7.767(1) Å, *c* = 11.966(1) Å, β = 109.125(8)°, *V* = 933.2(2) Å³, *Z* = 2, *D*_n = 3.981 g cm⁻³, space group *P*2 α /n (No. 14), μ (Mo Kα) = $Z = 2$, $D_c = 3.981$ g cm⁻³, space group $P2_1/n$ (No. 14), μ (Mo K α) = 225.52 cm⁻¹, $2\theta_{\text{max}} = 50.0^{\circ}$, octants collected $0 \le h \le 13$, $0 \le k \le 9$, $-14 < l < 14$; number of total data collected 1888; number of unique $-14 \le l \le 14$; number of total data collected 1888; number of unique data 1787 $(R_{\text{int}} = 0.024)$; number of data with $F_{\text{c}}^2 \ge 3\sigma(F_{\text{c}}^2)$ 1145; data 1787 ($R_{\text{int}} = 0.024$); number of data with $F_o^2 \geq 3\sigma(F_o^2)$ 1145; number of variables 82. An empirical absorption correction based on ν number of variables 82. An empirical absorption correction based on *ψ* scans was applied to the data; absorbance ratio (min/max) 0.7831. All atoms were refined anisotropically. Final $R/R_w = 0.028/0.027$.

Figure 1. Structure of $K_2Cu_2P_4Se_{10}$ viewed down the *b* axis. K^+ ions are light gray ellipsoids, selenium atoms are open ellipsoids, and phosphorus atoms are small black ellipsoids.

quaternary CuMP₂Se₆ (M = Cr, In),^{7b} which have been prepared by direct combination reactions. Further investigations into the Cu chemistry in the aforementioned fluxes led to $K_2Cu_2P_4Se_{10}$, a new phase with an unprecedented cyclohexane-like $[P_4Se_{10}]^{4-}$ group.

 $K_2Cu_2P_4Se_{10}^8$ is a compound with a new, two-dimensional structure type. It contains $[Cu_2P_4Se_{10}]_n^{2n}$ layers which are separated by eight-coordinate K^+ cations [range of $K-$ Se distances $3.396(3) - 3.780(3)$ Å; average 3.528 Å], as shown in Figure 1. The layers consist of infinite chains of corner-sharing CuSe4 tetrahedra that propagate along the *b* axis; see Figure 2A. These chains are then interstitched in two dimensions by cyclic $[P_4Se_{10}]^{4-}$ groups. The latter are observed for the first time and feature P-P bonds with tetravalent P atoms. The only other
 $[PO]^{n-}$ group with P-P bonds and P^{4+} is the ethane-like $[P_yQ_z]^{n-}$ group with P-P bonds and P⁴⁺ is the ethane-like $[P_2Se_6]^{4-}$. The $[P_4Se_{10}]^{4-}$ group forms a cyclohexane-like ring with the chair conformation, which consists of four phosphorus and two selenium atoms; see Figure 2B. It can be viewed as the result of a fusion between two $[P_2Se_6]^{4-}$ groups which share two common selenium atoms $[Se(3), Se(3')]$. As a ligand, it possesses eight terminal Se atoms available for coordination. In the present case, the unit utilizes six terminal Se atoms to engage four Cu atoms to build the entire $\left[\text{Cu}_2\text{P}_4\text{Se}_{10}\right]_n^{2n}$ layer; see Figure 2B.

The Cu atoms have tetrahedral coordination with Cu-Se distances averaging 2.46(5) Å, similar to those found in $Cs_2Cu_2P_2$ -

⁽¹⁾ Kanatzidis, M. G. *Curr. Opin. Solid State Mater. Sci.* **1997**, *2*, 139.

^{(9) (}a) Sheldrick, G. M. In *Crystallographic Computing 3*; Sheldrick, G. M., Kruger, C., Doddard, R., Eds.; Oxford University Press: Oxford, England, 1985; pp 175-189. (b) *TEXSAN: Single-Crystal Structure Analysis Software*, Version 5.0; Molecular Structure Corp.; The Woodlands, TX 77381, 1981.

Figure 2. (A) A single $[Cu_2P_4Se_{10}]_n^{2n-}$ layer viewed in the [101] direction Some corner-sharing CuSe, tetrahedra are shown in polyhedral direction. Some corner-sharing CuSe₄ tetrahedra are shown in polyhedral representation. (B) A fragment of the same layer with labeling. Selected distances (\hat{A}) : $Cu-Se(1)$ 2.488(2), $Cu-Se(1')$ 2.524(2), $Cu-Se(4)$ distances (Å): Cu-Se(1) 2.488(2), Cu-Se(1′) 2.524(2), Cu-Se(4) 2.450(2), Cu-Se(5) 2.394(2), P(1)–Se(1) 2.186(3), P(1)–Se(2) 2.138-
(3) P(1)–Se(3) 2.277(3) P(2)–Se(3') 2.281(3) P(2)–Se(4) 2.151(3) (3) , P(1)-Se(3) 2.277(3), P(2)-Se(3') 2.281(3), P(2)-Se(4) 2.151(3), P(2)-Se(5) 2.161(3), P(1)-P(2) 2.246(4). Selected angles (deg): Se(1)- Cu-Se(1') 109.88(5), Se(1)-Cu-Se(4) 112.32(7), Se(1)-Cu-Se(5) 110.39(6), Se(1)-P(1)-P(2) 109.2(1), similar angles around P(2), P(1)-Se(3)-P(2′) 109.9(1), P(1)-Se(1)-Cu 96.36(8), P(2)-Se(5)-Cu 94.72- (8), Cu-Se(1)-Cu' 143.33(6), $P(2')-Se(4'')-Cu'$ 102.61(9).

 $\text{Se}_6{}^{3a}$ and $\text{K}_3\text{Cu}_3\text{P}_3\text{Se}_9{}^{5}$. Selected distances and angles are given in the caption of Figure 2. The P-Se distances range from 2.138(3) to 2.281(3) Å, with the noncoordinated selenium atoms [Se(2)] displaying the shorter ones.

The stabilization of the new $[P_4Se_{10}]^{4-}$ anion, instead of the very common $[P_2Se_6]^{4-}$, perhaps can be rationalized in terms of flux Lewis basicity. The composition of the flux $(Cu:P:K_2Se:Se$ $= 1:2:1.5:4.5$,¹⁰ used to obtain K₃Cu₃P₃Se₉,⁵ has a Lewis bacisity
which typically favors the formation of the IP-Se-^{14–} anion (P^{4+) 3f} which typically favors the formation of the $[P_2Se_6]^{4-}$ anion (P^{4+}) .^{3f}

(10) The actual flux composition⁵ was 1.5:0 of K₂Se₄:Se, which is equivalent to 1.5:4.5 of K₂Se.Se.

Figure 3. Single-crystal absorption spectrum of $K_2Cu_2P_4Se_{10}$.

In the case of $K_2Cu_2P_4Se_{10}$, the composition (Cu:P: $K_2Se:Se$) 1:3:1:8) contains less K_2 Se and more Se, thus rendering the flux even less basic and this presumably forces the $[P_2Se_6]^{4-}$ anion to convert to the $[P_4Se_{10}]^{4-}$ anion according to the equilibrium shown in eq 1.

$$
2[P_2Se_6]^{4-} \rightleftharpoons [P_4Se_{10}]^{4-} + 2Se^{2-}
$$
 (1)

Single-crystal optical transmission measurements on transparent, well-formed crystals give the spectrum of Figure 3, which shows a sharp gap, E_g , of 2.07 eV. Therefore, the compound is a semiconductor. The infrared spectrum displays absorptions at ca. 499 (vs), 488 (vs), 479 (vs), 435 (s), 387 (vs), 302 (vs), 194 (m) , and 159 (m) cm⁻¹. These vibrations are very similar to the ones observed for the $[P_2Se_6]^{4-}$ group.^{3a,c} The absorptions below 200 cm^{-1} are most probably due to Cu-Se vibrations.³ Differential thermal analysis (DTA) suggests that $K_2Cu_2P_4Se_{10}$ melts congruently at ca. 470 °C.

The synthesis of $K_2Cu_2P_4Se_{10}$ was accomplished through the chalcophosphate flux method. With this compound, the repertoire of chalcophosphate ligands is expanded to include the new cyclohexane-like $[P_4Se_{10}]^{4-}$ unit. The latter is the only other anion, except $[P_2Se_6]^{4-}$, which contains P-P bonds and P⁴⁺. It would be interesting to see if the $[P_4Se_{10}]^{4-}$ unit can be isolated as a molecular species, using charge-balancing alkali metal cations [e.g., $A_4P_4Se_{10}$ (A = K, Rb, Cs)].¹¹

Acknowledgment. Financial support from National Science Foundation DMR-9527347 is gratefully acknowledged.

Supporting Information Available: Tables of crystal data and X-ray experimental details, fractional atomic coordinates of all atoms, anisotropic and isotropic thermal parameters of all atoms, interatomic distances and angles, and calculated and observed X-ray powder patterns (16 pages). Ordering information is given in any current masthead page.

IC971539+

 (11) Kanatzidis, M. G.; Aitken, J. Work in progress.